
O�ine Narrowing-Driven Specialization in Practice∗

G. Arroyo, J.G. Ramos, S. Tamarit, G. Vidal

DSIC, Technical University of Valencia

Camino de Vera s/n, 46022, Valencia, Spain

{garroyo, guadalupe, stamarit, gvidal}@dsic.upv.es

Abstract

O�ine narrowing-driven partial evaluation is a
recent technique for the specialization of func-
tional and functional logic programs. In this
work, we describe novel control strategies that
can be used to design a powerful narrowing-
driven partial evaluator.

1 Introduction

Partial evaluation [12] is a well-known tech-
nique for the specialization of programs. Ba-
sically, given a program and some restriction
on its use (e.g., part of its input data), a par-
tial evaluator returns a new�hopefully more
e�cient�residual program which is special-
ized for the given restriction.
Partial evaluation methods can be broadly

classi�ed into online or o�ine methods. On-
line partial evaluators perform a single, mono-
lithic process which combines symbolic evalu-
ation, propagation of partial values, and some
dynamic analysis to ensure the termination
of the process. O�ine partial evaluators, on
the other hand, have two clearly separated
stages. The goal of the �rst stage, often known
as binding-time analysis (BTA), is the inclu-
sion of some program annotations to guide
the proper specialization process. For this
purpose, a BTA usually includes some static
analysis to propagate known (abstract) values
through the entire program as well as a termi-
nation analysis. Then, the second stage takes

∗This work has been partially supported by
the EU (FEDER) and the Spanish MEC under
grants TIN2005-09207-C03-02 and Acción Integrada
HA2006-0008.

the annotated program and the actual values
of the known inputs and produces the associ-
ated residual program mainly by following the
program annotations.

In principle, o�ine specialization is less
powerful�i.e., residual programs may run
slower�but also more e�cient�i.e., partial
evaluators often run faster. Therefore, o�ine
specialization scales up better to large applica-
tions (e.g., they can be used for �compiling� a
program by partially evaluating an interpreter
w.r.t. a given source program).

Functional logic languages amalgamate the
main features of functional and logic languages
[9]. In this context, partial evaluation is often
driven by the standard operational semantics
of these languages, i.e., narrowing [19]. The so
called narrowing-driven approach [2] to partial
evaluation, originally introduced as an online
method, has recently been adapted to the of-
�ine style in [18, 4]. These works are mainly
focused on the termination of the process, in-
troducing a syntactic characterization of pro-
grams [18] and a (quasi-)termination1 analysis
[4] that can be used to annotate the source pro-
gram. However, control issues have not been
considered yet.

In this work, we present an annotation pro-
cedure that is based on the quasi-termination
analysis of [4]. Then, we introduce an o�ine
specialization algorithm that distinguishes two
di�erent levels. The global level ensures that
the number of di�erent specialized functions
is kept �nite. The local level takes a function

1A computation quasi-terminates when it only
contains a �nite number of di�erent terms modulo
variable renaming.

call and builds a �nite (possibly partial) eval-
uation of this call. The resulting method is
purely o�ine and, thus, very e�cient.
Finally, we also discuss a hybrid algorithm

that includes some simple tests during partial
evaluation so that the quality of the residual
programs migth be improved.

2 The Language

In this section, we present the syntax of �at
programs [10], a convenient standard repre-
sentation for functional logic programs which
makes explicit the pattern matching strat-
egy by case expressions. This �at represen-
tation constitutes the kernel of modern func-
tional logic languages like Curry [7] or Toy
[16]. Similar representations are considered
in [10, 11, 17]. Unlike them, we consider two
kinds of case expressions in order to represent
�exible/rigid evaluation annotations of source
programs as expressions. Since inductively se-
quential programs [3] (with evaluation annota-
tions) can be automatically translated into the
�at representation, our approach covers recent
proposals for multi-paradigm functional logic
programming. The syntax for programs in the
�at representation is as follows:

R ::= D1 . . .Dm

D ::= f(xn) = e
e ::= x

| c(en)
| f(en)
| case e of {pn → en}
| fcase e of {pn → en}

p ::= c(xn)

Here, we write on for the sequence of objects
o1, . . . , on. Thus, a program R consists of a
sequence of function de�nitions D such that
the left-hand side is linear and has only vari-
able arguments, i.e., pattern matching is com-
piled into case expressions. The right-hand
side of each function de�nition is an expres-
sion e composed by variables (X), construc-
tors (C), function calls (F), and case expres-
sions for pattern matching. Variables are de-
noted by x, y, z . . ., constructors by a, b, c . . .,
and de�ned functions by f, g, h . . . The general

form of a case expression is:

(f)case e of { c1(xn1) → e1 ;
. . . ;

ck(xnk) → ek }

where e is an expression, c1, . . . , ck are dif-
ferent constructors of the type of e, and
e1, . . . , ek are expressions (possibly containing
case structures). The variables xni are local
variables which occur only in the correspond-
ing expression ei. The di�erence between case
and fcase shows up when the argument e is
a free variable: case suspends (which corre-
sponds to residuation) whereas fcase nonde-
terministically binds this variable to the pat-
tern in a branch of the case expression and
proceeds with the appropriate branch (which
corresponds to narrowing). Functions de�ned
only by fcase or case expressions are called
�exible or rigid, respectively.

An expression is operation-rooted if it is
rooted by a de�ned function symbol. It is
constructor-rooted if the root symbol is a con-
structor symbol.

For instance, the (�exible) function �app� to
concatenate two lists can be written in the �at
representation by the following single rule:

app (x, y) = fcase x of {
[] → y;

(z : zs) → z : app (zs, y) }

The operational semantics of �at programs is
based on the LNT (Lazy Narrowing with de�-
nitional Trees) calculus [10]. In Section 4.2 we
present a slight extension of this semantics for
performing computations at partial evaluation
time.

3 Quasi-Termination Analysis and

Program Annotation

We �rst adapt the quasi-termination analysis
of [4], originally introduced for term rewrit-
ing systems, to the �at language. Then, we
present an annotation procedure that is based
on this quasi-termination analysis.

3.1 Quasi-Termination Analysis

A transitive and antisymmetric binary relation
� is an order and a transitive and re�exive
binary relation % is a quasi-order. A binary
relation � is well founded i� there exist no
in�nite decreasing sequence t0 � t1 � t2 � . . .
An order � is closed under substitutions (or
stable) if s � t implies σ(s) � σ(t) for all terms
s, t and substitution σ.
The quasi-termination analysis is based on

the notion of size-change graph [13], which is
used to trace size changes of function argu-
ments when going from one call to another.
In order to adapt the original notion of size-
change graph to �at programs, we �rst need
the following auxiliary de�nition.

De�nition 1 (call pairs) Given a function
de�nition f(xk) = e, we let pairs(f(xk), e) be
the associated set of call pairs, which is induc-
tively de�ned as shown in Fig. 1.2

Following [20], our size-change graphs are pa-
rameterized by a reduction pair (%,�), where
% is a quasi-order, � is a well-founded or-
der, both % and � are closed under substi-
tutions and compatible (i.e., % ◦ � ⊆ � and
� ◦ % ⊆ � but % ⊆ � is not necessary). Fur-
thermore, we also require that s R t implies
Var(t) ⊆ Var(s) for all R ∈ {%,�} and terms
s and t.

De�nition 2 (size-change graph)
Let (%,�) be a reduction pair. For every def-
inition f(xn) = e of a �at program R and ev-
ery call pair (f(sn), g(tm)) ∈ pairs(f(xn), e),
we have a size-change graph as follows:

• The graph has n output nodes marked with
{1f , . . . , nf} and m input nodes marked
with {1g, . . . , mg}.

• If si � tj, then there is a directed edge
marked with � from if to jg. Otherwise,
if si % tj, then there is an edge marked
with % from if to jg.

2Here, we assume that case expressions only occur
in outermost positions. This is a reasonable assump-
tion since the �at programs obtained by translating
source programs always ful�ll it [10].

A size-change graph is thus a bipartite labelled
graph G = (V, W, E) where V = {1f , . . . , nf}
and W = {1g, . . . , mg} are the labels of the
output and input nodes, respectively, and we
have edges E ⊆ V ×W × {%,�}.

In order to analyze the termination of a pro-
gram, it su�ces to focus on its loops. For this
purpose, we now compute the transitive clo-
sure of the size-change relations as follows:

De�nition 3 (multigraph, concatenation)
Every size-change graph of R is a multigraph
of R. If G = ({1f , . . . , nf}, {1g, . . . , mg}, E1)
and H = ({1g, . . . , mg}, {1h, . . . , ph}, E2)
are multigraphs of R w.r.t. the same re-
duction pair (%,�), then the concatenation
G · H = ({1f , . . . , nf}, {1h, . . . , ph}, E) is
also a multigraph of R. For 1 ≤ i ≤ n and
1 ≤ k ≤ p, E contains an edge from if to
kh i� E1 contains an edge from if to some
jg and E2 contains an edge from jg to kh.
Furthermore, if some of the edges are labelled
with ��", then the edge in E is labelled with
��" as well. Otherwise, it is labelled with
�%".

A multigraph G is idempotent if G = G · G
(which implies that its input and output nodes
are both labelled with {1f , . . . , nf} for some
f). In the following, we will only focus on the
idempotent multigraphs of a program, since
they represent its (potential) loops.

Example 4 Consider the deforestation exam-
ple shown in Fig. 2 together with its asso-
ciated call pairs. This example is a slight
modi�cation of the applast benchmark in the
DPPD (Dozens of Problems for Partial Deduc-
tion [14]) library to better illustrate the notion
of size-change graph.
Let (%,�) be a reduction pair such that s %

t if s and t are equal up to variable renaming
and s � t if s is a strict subterm of t modulo
variable renaming. Then, we have �ve size-
change graphs associated to the �ve call pairs
which are depicted in Fig. 3. Finally, the three
idempotent multigraphs are shown in Fig. 4.

In the following, we are interested in a notion
of termination which is called PE-termination
[4] (a particular case of quasi-termination).

pairs(l, e) =

{ ⋃k
i=1 pairs({x 7→ pi}(l), ei) if e ≡ (f)case x of {pk → ek},

{(l, r) | r is an operation-rooted subterm of e } otherwise

Figure 1: Auxiliary function pairs

d1 ≡ applast(xs, x) = last(append(xs, [x]))
d2 ≡ last(xs) = fcase xs of { (y : ys) → last′(ys, y) }
d3 ≡ last′(ys, y) = fcase ys of { [] → [y]; (w : ws) → last(w : ws) }
d4 ≡ append(xs, ys) = fcase xs of { [] → ys; (w : ws) → w : append(ws, ys) }

pairs(d1) = {(applast(xs, x), append(xs, [x])), (applast(xs, x), last(append(xs, [x])))}
pairs(d2) = {(last(y : ys), last′(ys, y))}
pairs(d3) = {(last′(w : ws, y), last(w : ws))}
pairs(d4) = {(append(w : ws, ys), append(ws, ys))}

Figure 2: Deforestation example applast and its call pairs

G1 : applast −→ append G2 : applast −→ last

1applast
% // 1append

2applast 2append

1applast 1last

2applast

G3 : last −→ last′ G4 : last′ −→ last G5 : append −→ append

1last
� //
�

..

1last′

2last′

1last′
% // 1last

2last′

1append
� // 1append

2append
% // 2append

Figure 3: Size-change graphs for applast

G34 : last −→ last G43 : last′ −→ last′ G5 : append −→ append

1last
� // 1last 1last′

� //
�

..

1last′

2last′ 2last′

1append
� // 1append

2append
% // 2append

Figure 4: Idempotent multigraphs for applast

De�nition 5 (PE-termination) A compu-
tation is PE-terminating if only a �nite num-
ber of nonvariant function calls are unfolded.
A �at program is PE-terminating if every pos-
sible computation is PE-terminating.

Basically, a PE-terminating computation is a
(possibly in�nite) computation in which only
a �nite number of function calls (modulo vari-
able renaming) is unfolded.

Now, we consider that the output of a simple
(monovariant) binding-time analysis (BTA) is
available (see, e.g., [12]). Informally speak-
ing, given a program and the information on
which parameters of the initial function call
are static and which are dynamic, a BTA maps
each function to a list of static/dynamic val-
ues. Here, we consider that a static parame-
ter is de�nitely known at specialization time
(hence it is ground), while a dynamic parame-
ter is possibly unknown at specialization time.

In the following, we will also require the
component % of a reduction pair (%,�) to be
bounded, i.e., the set {s | t % s} must con-
tain a �nite number of nonvariant terms for
any term t. Some closely related notions are
that of rigidity and instantiated enough, both
de�ned w.r.t. a so called norm. These notions
are used in many termination analyses for logic
programs (e.g., [5, 15]).

The following theorem is a straightforward
extension of a similar result in [4] for term
rewrite systems.

Theorem 6 Let R be a �at program and
let (%,�) be a reduction pair. R is PE-
terminating w.r.t. any linear term if every
idempotent multigraph associated to a function
f/n contains either

(i) at least one edge if
�−→ if for some i ∈

{1, . . . , n} such that if is static, or

(ii) an edge if
R−→ if , R ∈ {%,�}, for all

i = 1, . . . , n, such that % is bounded.

Also, we require R to be right-linear w.r.t. the
dynamic variables, i.e., no repeated occurrence
of the same dynamic variable may occur in a
right-hand side.

Boundedness of �%� in the second case (ii)
above is necessary to ensure that no in�nite
sequences of nonvariant function calls with ar-
guments of the same �size� according to % are
allowed. Right-linearity of dynamic variables
is required to avoid the propagation of terms
between the parameters of the same function.
The reader is referred to [4] for further details.

3.2 Program Annotation

In this section, we present an annotation pro-
cedure that is based on the quasi-termination
analysis presented in the previous section.
The following de�nition introduces our an-

notation procedure. Here, we consider that
the programR, the reduction pair (%,�),3 the
idempotent multigraphs of R, and the output
of a BTA, are global parameters.

De�nition 7 (program annotation)
The program is annotated by replacing ev-
ery rule f(xn) = e in R by a new rule
f(xn) = annl(anng(annu(e))).4

Function annu is used to add unfolding an-
notations as shown in Fig. 5: a function f is
annotated as fu if it can be safely unfolded and
fm otherwise (where m stands for memo).5

Function anng is used to add generalization
annotations (their use will be explained in the
next section). Its de�nition is shown in Fig. 6,
where Fan denotes the domain of annotated
functions.
Finally, function annl is used to linearize

expressions as shown in Fig. 7.

Example 8 Consider again the program
applast shown in Fig. 2. Let us consider its
specialization w.r.t. a known value of the �rst
argument of applast. In this case, a BTA
would return the following division:

{ applast 7→ (S, D), append 7→ (S, D),
last 7→ (D), last′ 7→ (D, D) }

3There are many techniques to search for such re-
duction pairs automatically (LPO, polynomial inter-
pretations, etc., see, e.g., [6]).

4We use three independent functions for clarity.
The implementation only requires a single pass to add
all annotations.

5As mentioned before, we only consider variables
as arguments of case expressions.

ann
u
(e) =



x if e ≡ x ∈ X

c(annu(en)) if e ≡ c(en), c ∈ C

(f)case x of {pk → annu(ek)} if e ≡ (f)case x of {pk → ek}

fu(annu(en)) if e ≡ f(en), f ∈ F , and every idempotent multigraph
associated to f/n contains at least one edge

if
�−→ if for some i ∈ {1, . . . , n} such that if is static

fm(annu(en)) otherwise, where e ≡ f(en)

Figure 5: Annotation function annu

Input: a program R and a set of calls T
Output: a set of calls S
Initialization: i := 0; T0 := T
Repeat

R′ := unfold(Ti,R);
Ti+1 := abstract(Ti,R′

calls);
i := i + 1;

Until Ti = Ti−1 (modulo variable renaming)
Return: S := Ti

Figure 8: Generic procedure for NPE

where S denotes that an argument is static
(ground) and D that it is dynamic. Here, our
annotation procedure returns

applast(xs, x)=lastm(appendu(xs, [x]))

last(xs) =fcase xs of

{ (y : ys) → last′m(ys, y) }
last′(ys, y) =fcase ys of

{ [] → [y];
(w : ws) → lastm(w : ws) }

append(xs, ys)=fcase xs of

{ [] → ys;

(w : ws) → w : appendu(ws, ys) }

4 Control Issues

In this section, we �rst recall the generic pro-
cedure for narrowing-driven partial evaluation
and, then, present our novel strategies for the
global and local control levels.
The generic procedure is shown in Figure 8.

Similarly to Gallagher's procedure for the par-
tial evaluation of logic programs [8], our algo-
rithm clearly distinguishes two di�erent levels:
Local level. Given a set of operation-rooted

terms (i.e., function calls), the local level ap-

plies an unfolding operator unfold so that a set
of residual rules is returned (see Section 4.2).
The unfolding operator should ensure that the
unfolding process is �nite, i.e., that no partial
computation runs forever.
Global level. This level should ensure that

the number of di�erent specialized functions
is kept �nite. For this purpose, an abstrac-
tion operator abstract is used. The abstraction
operator takes a �nite set of operation-rooted
terms Ti and then properly adds the set of
operation-rooted subterms in the right-hand
sides of the unfolded calls, which is denoted
by R′

calls. The new set Ti+1 may need further
evaluation and, thus, the process is iteratively
repeated while new terms are introduced.
Observe that this procedure does not return

a partially evaluated program but a �nite set
of operation-rooted terms. The residual pro-
gram, however, can easily be built by apply-
ing the unfolding operator to the returned set
of terms and, then, renaming the rules by us-
ing a standard post-unfolding phase (see Sec-
tion 4.2).

4.1 Global Control

Our abstraction operator is based on the fol-
lowing property.
Consider a (possibly in�nite) computation

in a program annotated according to De�ni-
tion 7 and let t1, t2, t3, . . . be any sequence
of operation-rooted terms in this computa-
tion. Let abs(t) be a function that re-
places every annotated subterm gen(t′) in
t (if any) by a fresh variable. Then, the
sequence abs(t1), abs(t2), abs(t3), . . . is quasi-
terminating.

ann
g
(e) =



x if e ≡ x ∈ X

c(anng(en)) if e ≡ c(en), c ∈ C

(f)case x of {pk → anng(ek)} if e ≡ (f)case x of {pk → ek}
fan(e′n) if e ≡ fan(en), fan ∈ Fan, and

e′i =


anng(ei) if every idempotent multigraph

associated to f/n contains an

edge if
R−→ if , R ∈ {%,�}

e′i = gen(anng(ei)) otherwise

Figure 6: Annotation function anng

ann
l
(e) =

{
(f)case x of {pk → annl(ek)} if e ≡ (f)case x of {pk → ek}
linear(e) otherwise

where function linear annotates every occurrence of a dynamic variable not
yet annotated but one (e.g., the leftmost one)

Figure 7: Annotation function annl and auxiliary function linear

Therefore, our abstraction operator is based
on replacing annotated subterms by fresh vari-
ables. In the following, we denote by t ∈ T the
fact that there is a term t′ ∈ T such that t and
t′ are equal modulo variable renaming.

De�nition 9 (abstraction operator)
Let T1, T2 be �nite sets of terms. Then,
abstract(T1, T2) is de�ned as follows:

abstract(T1, T2) =

T1 if T2 = { }
abstract(T1, T ′2) if T2 = {t} ∪ T ′2

and gen(t) ∈ T 1

abstract(T1 ∪ {t′}, T ′2) if T2 = {t} ∪ T ′2
and t′ = gen(t) 6∈ T 1

4.2 Local Control

Now, we introduce our unfolding operator. It
is driven by the unfolding annotations, so that
functions of the form fu should be unfolded
while functions fm should not. Clearly, every
computation in which only functions fu are
unfolded should be �nite.
Computations are performed with a slight

extension of the RLNT calculus [1] as shown
in Fig. 9. First, note that the symbols � [[�
and �]]� in an expression like [[e]] are purely
syntactical (i.e., they do not denote �the value

of e�). Indeed, they are only used to mark
subexpressions where the inference rules may
be applied. Let us brie�y explain the rules of
the calculus:

The �rst three rules deal with function calls.
If the function is annotated with u, then rule
Unfold performs a function unfolding. If it is
annotated with m, rule Memo suspends the
evaluation of the call. Finally, rule Gen is sim-
ply used to ignore the generalization annota-
tions. Observe that the evaluated expression
never contains annotations u nor m, since they
are not needed in the global level.

The last four rules deal with case expres-
sions. Rule Select is used to select match-
ing branch of a case expression when its ar-
gument is a constructor-rooted term. Rule
Guess applies when the argument is a free vari-
able; here, we residualize the case structure
and continue with the evaluation of the dif-
ferent branches (by applying the correspond-
ing substitution in order to propagate bindings
forward in the computation). Rule Eval is used
to evaluate case expressions with a function
call or another case expression in the argument
position. Here, root(e) denotes the outermost
symbol of e. Finally, rule Case-of-Case moves
the outer case inside the branches of the inner
one and, thus, the evaluation of the branches

Unfold

[[fu(en)]] ⇒ [[σ(e′)]] if f(xn) = e′ ∈ R and σ = {xn 7→ en}
Memo

[[fm(en)]] ⇒ f(en)

Gen

[[gen(e)]] ⇒ gen([[e]])
Select

[[(f)case c(en) of {pk → e′k}]] ⇒ [[σ(e′i)]] if pi = c(xn) and σ = {xn 7→ en}, i ∈ {1, . . . , k}
Guess

[[(f)case x of {pk → ek}]] ⇒ (f)case x of {pk → [[σk(ek)]]}
if σi = {x 7→ pi}, i = 1, . . . , k

Eval

[[(f)case e of {pk → ek}]] ⇒ [[(f)case e′ of {pk → ek}]]
if [[e]] ⇒ [[e′]], e 6∈ X , root(e) 6∈ C, and
e 6= (f)case x of {. . .}

Case-of-Case

[[(f)case ((f)case x of {pk → ek}) of {p′j → e′j}]]
⇒ [[(f)case x of {pk → (f)case ek of {p′j → e′j}}]]

Figure 9: The o�ine RLNT calculus

can now proceed (similar rules can be found
in the Glasgow Haskell Compiler as well as in
Wadler's deforestation [21]).
Observe that RLNT computations with an

annotated program are always �nite as an easy
consequence of Theorem 6.
Our unfolding operator can now be de�ned

as follows:

De�nition 10 (unfolding operator)
Given a �at program R and a set of terms T ,
we let unfold(T,R) =

{f(en) = [[σ(e)]] |f(en) ∈ T, f(xn) = e ∈ R,
and σ = {xn 7→ en} }

Observe that the unfolding operator does not
return a legal �at program. This is not rele-
vant during the specialization process. Once
the iterative process �nishes, one can add a
standard post-processing of renaming that re-
places every left-hand side of the form f(en) by
f(xm) where xm are the di�erent variables of
en in the same order in which they occur and,
then, renames accordingly the expressions in
the right-hand sides.

Example 11 Consider again the annotated
program of Ex. 8. The partial evaluation w.r.t.
the initial set of calls T0 = {applast([1], x)}

produces the following sequence of calls (ac-
cording to the algorithm in Fig. 8):

T1 = T0 ∪ {last(append([1], [x]))}
T2 = T1 ∪ {last′(append([], [x]), 1)}
T3 = T2 ∪ {last([x])}
T4 = T3 ∪ {last′([], x)}

and the algorithm stops since T5 is equal to T4

modulo variable renaming.
Using our prototype implementation of the

partial evaluator, we get the following associ-
ated resultants (we write app for append):

applast([1], x) = last(app([1], [x]))

last(app([1], [x])) = last′(app([], [x]), 1)

last′(app([], [x]), 1) = last([x])
last([x]) = last′([], x)

last′([], x) = [x]

so that, after a simple process of renaming and
simpli�cation, the �nal result is simply the fol-
lowing rule (the optimal specialization):

applast1(x) = [x]

4.3 Re�ning the Local Control

Finally, we present a simple re�nement of the
unfolding operator presented in the previous
section.

Unfold

[[f(en)]]T ⇒ [[σ(e′)]]T∪{gen(f(en)} if gen(f(en)) 6∈ T , f(xn) = e′ ∈ R and σ = {xn 7→ en}
Memo

[[f(en)]]T ⇒ f([[en]]T) if gen(f(en)) ∈ T

Figure 10: The hybrid RLNT calculus

The basic idea is as follows: we consider that
the annotation process does not include u and
m annotations so that the local level applies
a termination test which is similar to that in
the global level. For this purpose, the o�ine
RLNT calculus is modi�ed as follows:
During the evaluation, we have expressions

of the form [[e]]T where T records the calls al-
ready evaluated. Now, the initial expression
has the form [[e]]{ }.
The �rst two rules of the calculus are rede-

�ned as shown in Fig. 10. Basically, we unfold
those function calls that, after replacing anno-
tated subterms by fresh variables, are equal up
to variable renaming to some previously un-
folded call. In this case, the generalized call
is added to the current set of memorized calls.
Otherwise, the call is not unfolded and we pro-
ceed by evaluating its arguments.
The remaining rules just propagate the cur-

rent set of memorized calls.
The termination of the new local strategy is

still an easy consequence of Theorem 6. The
main di�erence with the previous local strat-
egy is that, now, it is not a pure o�ine strategy
since we perform some (simple online) tests in
the local level, thus we call it hybrid.
Table 1 shows the results from an experi-

mental evaluation of both strategies. In gen-
eral, both strategies achieve similar improve-
ments and are equally e�cient.

Example 12 Consider again Example 8 but
taking into accout the re�ned local control.
Then, we have the following computation

applast([1], x){}

⇒last(app([1], [x])){} ∪ {applast([1],x)}

⇒. . . ⇒ [x]

so that the renamed resultant is:

applast1(x) = [x]

i.e., the call was completely unfolded.

5 Conclusions

In this work, we have introduced appropri-
ate control strategies to design an o�ine
narrowing-driven partial evaluator. An im-
plementation of a partial evaluator that fol-
lows the ideas presented so far has been un-
dertaken. Our preliminary results are encour-
aging.

References

[1] E. Albert, M. Hanus, and G. Vidal. A Resid-
ualizing Semantics for the Partial Evaluation
of Functional Logic Programs. Information
Processing Letters, 85(1):19�25, 2003.

[2] E. Albert and G. Vidal. The Narrowing-
Driven Approach to Functional Logic Pro-
gram Specialization. New Generation Com-
puting, 20(1):3�26, 2002.

[3] S. Antoy. De�nitional trees. In Proc. of
the 3rd Int'l Conference on Algebraic and
Logic Programming (ALP'92), pages 143�
157. Springer LNCS 632, 1992.

[4] G. Arroyo, J.G. Ramos, J. Silva, and G. Vi-
dal. Improving O�ine Narrowing-Driven Par-
tial Evaluation using Size-Change Graphs. In
Proc. of LOPSTR'06, pages 60�76. Springer
LNCS 4407, 2007.

[5] M. Codish and C. Taboch. A Semantic Ba-
sis for the Termination Analysis of Logic
Programs. Journal of Logic Programming,
41(1):103�123, 1999.

[6] N. Dershowitz. Termination of Rewrit-
ing. Journal of Symbolic Computation,
3(1&2):69�115, 1987.

[7] M. Hanus (ed.). Curry: An Integrated
Functional Logic Language. Available at:
http://www.informatik.uni-kiel.de/~mh/curry/.

[8] J. Gallagher. Tutorial on Specialisation of
Logic Programs. In Proc. of the ACM Symp.
on Partial Evaluation and Semantics-Based
Program Manipulation (PEPM'93), pages
88�98. ACM, New York, 1993.

Table 1: Benchmark results
Hybrid Offline

benchmark codesize original spec. runtime speedup spec. runtime speedup
(bytes) runtime time spec. time spec.

ackermann 759 1881 900 562 3,35 880 566 3,32
allones 683 1468 180 1448 1,01 200 1497 0,98
applast 663 1175 200 1161 1,01 210 1097 1,07
flip 903 794 220 802 0,99 280 789 1,01
gauss 2919 231 660 230 1,00 780 235 0,98
interSB 1768 168 1690 165 1,02 2280 176 0,95
kmp3B ∗ A 30603 96 19170 78 1,23 20020 52 1,85
power 816 524 1040 567 0,92 1230 544 0,96
revAccum 943 1 3190 0.1 10.00 1190 0.1 10

Average 4451 704 3028 557 2 3008 551 2

[9] M. Hanus. The Integration of Functions
into Logic Programming: From Theory to
Practice. Journal of Logic Programming,
19&20:583�628, 1994.

[10] M. Hanus and C. Prehofer. Higher-Order
Narrowing with De�nitional Trees. Journal of
Functional Programming, 9(1):33�75, 1999.

[11] T. Hortalá-González and E. Ullán. An Ab-
stract Machine Based System for a Lazy Nar-
rowing Calculus. In Proc. of FLOPS 2001,
pages 216�232. Springer LNCS 2024, 2001.

[12] N.D. Jones, C.K. Gomard, and P. Sestoft.
Partial Evaluation and Automatic Program
Generation. Prentice-Hall, Englewood Cli�s,
NJ, 1993.

[13] C.S. Lee, N.D. Jones, and A.M. Ben-Amram.
The Size-Change Principle for Program Ter-
mination. SIGPLAN Notices (Proc. of
POPL'01), 28:81�92, 2001.

[14] M. Leuschel. The DPPD (Dozens of Prob-
lems for Partial Deduction) Library of
Benchmarks. Available at URL:
www.ecs.soton.ac.uk/~mal/systems/dppd.html.

[15] N. Lindenstrauss and Y. Sagiv. Automatic
Termination Analysis of Logic Programs. In
Proc. of Int'l Conf. on Logic Programming
(ICLP'97), pages 63�77. The MIT Press,
1997.

[16] F. López-Fraguas and J. Sánchez-Hernández.
TOY: A Multiparadigm Declarative System.
In Proc. of the 10th Int'l Conf. on Rewrit-
ing Techniques and Applications (RTA'99),
pages 244�247. Springer LNCS 1631, 1999.

[17] W. Lux and H. Kuchen. An E�cient Abstract
Machine for Curry. In Proc. of the 8th Int'l
Workshop on Functional and Logic Program-
ming (WFLP'99), pages 171�181, 1999.

[18] J.G. Ramos, J. Silva, and G. Vidal. Fast
Narrowing-Driven Partial Evaluation for In-
ductively Sequential Systems. In Proc. of
ICFP'05, pages 228�239. ACM Press, 2005.

[19] J.R. Slagle. Automated Theorem-Proving
for Theories with Simpli�ers, Commutativ-
ity and Associativity. Journal of the ACM,
21(4):622�642, 1974.

[20] R. Thiemann and J. Giesl. The Size-Change
Principle and Dependency Pairs for Termina-
tion of Term Rewriting. Applicable Algebra
in Engineering, Communication and Com-
puting, 16(4):229�270, 2005.

[21] P.L. Wadler. Deforestation: Transforming
programs to eliminate trees. Theoretical
Computer Science, 73:231�248, 1990.

