
DRAFT for GPCE 2011

Trends in Specialization of Interpreters using
Offline Narrowing-Driven Partial Evaluation.

Gustavo Arroyo
Centro Interdisciplinario de Investigación y
Docencia en Educación Técnica (CIIDET),

Av. Universidad 282 Pte., Col. Centro,
CP 76000, Querétaro, México

garroyo@ciidet.edu.mx

J. Guadalupe Ramos
Instituto Tecnológico de la Piedad,

Av. Tecnolgico No. 2000, Col. Meseta de los laureles,
CP 59300, La Piedad, Michoacán, México

guadalupe@dsic.upv.es

Abstract
The search of compilation by specialization of interpreters is a
source to source program transformation which has inspired the
work of scientists in partial evaluation from many years ago.
Narrowing-driven Partial Evaluation (NPE) is a powerful tech-
nique for the specialization of functional logic programs. Recent
advances in research of offline NPE schemes allow us to develop
partial evaluators that process bigger programas. In this work we
introduce the stages of a novel pure offline partial evaluator de-
veloped in the functional logic language Curry which is able to
specialize FlatCurry (the intermediate representation of Curry) pro-
grams. In particular, we describe the first experiments in the spe-
cialization of interpreters. Our partial evaluator specializes more
realistic programs than previous versions since it allows the pro-
cessing of programs including built-ins and constraints.

Categories and Subject Descriptors D [PROGRAMMING LAN-
GUAGES, LOGICS AND MEANINGS OF PROGRAMS]: Seman-
tics of Programming Languages, Processors

Keywords Offline partial evaluation, specialization, interpreters,
compilation, narrowing

1. Introduction
It is well known that there are two methods to formally describe
the semantics of a programming language. The first one is by
describing the translation process from a source language into
another target language whose semantics is already known, i.e,
the description of a translator. The second one is by describing
a procedure to evaluate statements that belong to the language
to be defined, i.e., the description of an interpreter [12]. While
interpreters are easier to write and maintain, they are inefficient.
On the other hand the executable program of a compilation is more
efficient, but is more expensive to implement.

One way to get the best of both approaches is to implement a
specialization of an interpreter, to automatically generate an effi-
cient implementation [33].

[Copyright notice will appear here once ’preprint’ option is removed.]

Partial evaluation of programs is a formal technique for special-
ization and optimization of programs based on semantics which
has been investigated within different programming paradigms and
applied to a wide variety of languages. Also known as a source-to-
source computer programs transformation technique to specialize
a program with respect to a part of their input (hence also called
program specialization).

Writing interpreters and compilers performance can be con-
nected by partial evaluation; the advantages of prototyping inter-
preters in general, and the efficiency of the compilers are gained.
Because the net effect of the specialization of an interpreter (to a
program) is the compilation [5].

A partial evaluator takes a program and part of its input data
(known as static data) and try to perform (reduce) all the computa-
tions that are possible from such data. The partial evaluator returns
a new program called residual program, which usually runs more
efficiently than the original program, since the computations that
depend on static data have been made during the partial evaluation
itself once and for ever [20].

Partial evaluators can be broadly classified into online and of-
fline. Online partial evaluators decide dynamically during special-
ization which operations to reduce. As offline partial evaluator pro-
cesses an annotated program, in which the annotations determine
whether an operator is to be applied or not.

Partial evaluation has been extensively applied in the area of
functional programming [10, 20, 34] and logic programming [13,
23, 26, 28], where it is commonly known as partial deduction.

In [1] the foundations of narrowing-driven partial evaluation
(NPE) are examined, previously narrowing was originally intro-
duced by Slagle [32] as a mechanism for theorem proving which is
a sound and complete method for solving equations with respect to
a set of rules confluent and terminating [19]; this is an enough rea-
son to use narrowing as a basic principle for defining the execution
semantics of functional logic programs [14].

NPE [1] is a powerful technique of specialization for the first or-
der component of many functional languages like Haskell [29] and
functional logic as Curry [15]. At NPE, using a refinement of nar-
rowing [32] to perform symbolic computation, being needed nar-
rowing [6] the strategy that has better properties. In [4] state that
NPE is formalized within the theoretical framework established
in [26] and by Martens and Gallagher in [27] for deduction of
logic programs, although several concepts have been generalized to
deal with functional features such as user-defined functions, eager
and lazy evaluation strategies, and deterministic reduction steps.
In general, the narrowing space of terms may be infinite. How-
ever, even in this case, NPE may end when the original program
is quasi-terminating with respect to the narrowing strategy consid-

paper for GPCE’11 1 2012/5/11

ered, i.e., when only finitely many different terms—modulo vari-
able renaming—are computed.

An offline approach to narrowing-driven partial evaluation has
been introduced in [30]. In order to improve its accuracy, [7] adapts
a size-change analysis [24] to the setting of narrowing, this analysis
is then used to identify a particular form of quasi-termination1. The
output of a standard binding-time analysis is also used in order to
provide information on which function arguments are static (and
thus ground) and which are dynamic, so the combined use of size-
change graphs and binding-time analysis; let to infer if the program
quasi-terminates as well which ones problematic fragments of code
must be annotated to be generalized at partial evaluation time.

In this work, we present the specialization of interpreters writ-
ten in the functional logic language Curry with first order func-
tions definitions using the improved offline approach to narrowing-
driven partial evaluation of [7], we include also an extension to
consider several built-ins and constraints. The paper is organized
as follows. Section 2 introduces our pure offline partial evaluator
named mixpo. Then, Section 3 presents an explanation of the im-
plementation of interpreters. Section 4 shows the specialization of
interpreters with built-ins and constraints. In Section 5 a discussion
of some related work is included and finally Section 6 concludes.

2. Pure offline partial evaluator (mixpo)
In this section, we introduce a description of the stages, data and
processes of our offline partial evaluator. For this, we refer to some
notions related to the setting of narrowing driven partial evaluation
which were considered in our implementation.

Online vs offline. Online partial evaluators perform a single
monolithic process [10] which combines symbolic evaluation,
propagation of partial values and a dynamic analysis to ensure the
termination of the process. In fact, the so called narrowing-driven
approach [1] to partial evaluation was originally introduced as an
online method.

On the other hand, offline partial evaluators have two clearly
separate stages, i.e., a first stage commonly known as binding-
time analysis (BTA) which aims to include some annotations to
the program to guide the specialization process.

Binding Time Analysis. A BTA usually performs a static analysis
to propagate the known (abstract) values throughout the entire
program. In our case, the BTA computes a fixed point on the
arguments of the program functions from the initial known values
of a function call in order to specialize by considering only static
(S) and dynamic (D) abstract values2.

The result of our BTA is monovariant, i.e., a single sequence
of binding-times is associated to the arguments of each program
function—a monovariant division—(see, eg, [20]).

We call our offline partial evaluator as pure or 100% offline
(mixpo) because all decisions about partial evaluation termination
(well known like control issues) are taken before the proper special-
ization process. Thus, partial evaluation process is entirely directed
by the annotations which were added during the BTA, i.e., the ter-
mination analysis is carried out at an early stage.

Additionally, our BTA considers a recent approach to analyze
the behavior of functions arguments in successive function calls.

Size Change Analysis. The size-change analysis [24] adapted in
[7] to the setting of narrowing, is then used to detect potential

1 A computation quasi-terminates when it only contains a finite number of
different terms modulo variable renaming
2 We consider the conventional values obtained from the binding-time ana-
lysis as static (absolutely known at partial evaluation time) and dynamic
(probably known at partial evaluation time)

Figure 1. Outline offline partial evaluator (mixpo)

sources of non-termination, so that the arguments that may intro-
duce infinite loops at partial evaluation time are annotated to be
generalized, i.e., replaced by fresh variables, in the partial evalua-
tion stage.

Size-change analysis lets to find out which function arguments
into the function calls are increasing and hence they could cause
infinite loops, for this, the analysis builds a set of size-change
(multi) graphs that depict the arguments behavior. In this setting
an idempotent multigraph describes the arguments in a cycle, i.e.,
how is the behavior (decreasing or increasing) of the arguments
departing from a certain function and returning to the same function
and hence completing a cycle (Observe Figure 3).

Roughly speaking, we use size-change graphs to approximate
the changes in parameter sizes from one function call to another.
In fact, we use the the size-change graphs information to identify a
particular form of quasi-termination [11] called PE-termination in
[7], which ensures that only finitely many different function calls
can be produced in a computation.

We were inspired by the Theorem 1 and PE-termination Def-
inition of [7] to implement the annotation process, this allows us
to ensure quasi-terminating computations and as a consequence the
finiteness of the partial evaluation process.

The source language. Now we present the source language of
subject programs to be specialized. The syntax of flat programs [17]
has been successfully applied for the representation of functional
logic programs which makes explicit the pattern matching strategy
by case expressions. This flat representation constitutes the core
of modern functional logic languages like Curry. In the setting of
Curry, FlatCurry is the flat representation of source programs, and
hence, as for annotation as for specialization we compute FlatCurry
programs. Indeed, one feature of Curry programs is that they are
automatically translated and stored in flat representation [18].

We use a subset of the abstract syntax for programs in the flat
representation as follows:

R ::= D1 . . .Dm (program)
D ::= f(xn) = e (function definition)
e ::= x (variable)

| c(en) (constructor call)
| f(en) (function call)
| case e of {pn → en} (rigid case)
| fcase e of {pn → en} (flexible case)

p ::= c(xn) (pattern)

paper for GPCE’11 2 2012/5/11

data Nat = Z | S Nat
main x = prod (x) (fib (S (S (S (S (S Z))))))

fib x = case x of
Z −> Z
(S Z) −> (S Z)
(S (S n)) −> sum (fib (S n)) (fib n)

prod x y = case x of
Z −> Z
(S w) −> sum y (prod w y)

sum x y = case x of
Z −> y
(S w) −> S (sum w y)

Figure 2. Fibonacci example for natural numbers

Here, a term like on represents a sequence of objects o1, . . . , on.
Thus, a program R consists of a sequence of function definitions
D such that the left-hand side is linear and has only variable ar-
guments The right-hand side of each function definition is an ex-
pression e composed by variables (V), constructors (C), function
calls (F), and case expressions for pattern matching, i.e., pattern
matching is compiled into case expressions. Variables are denoted
by x, y, z . . ., constructors by a, b, c . . ., and defined functions by
f, g, h . . . The difference between case and fcase shows up when
the argument e is a free variable: case suspends (which corresponds
to residuation) whereas fcase nondeterministically binds this vari-
able to the pattern in a branch of the case expression and proceeds
with the appropriate branch (which corresponds to narrowing).

2.1 The structure of mixpo
Figure 1 shows the complete scheme of our implementation, we can
see that the process contained in the dotted box includes both sim-
ple BTA and size-change analysis, both processes take as input the
program (p) to be specialized and deliver their results to the anno-
tation process itself, that produces the annotated program (pann).
Then, the partial evaluator (mixpo) receives pann and performs
the proper partial evaluation process to produce a final specialized
program ppe.

We present an annotation procedure that is based originally
on the quasi-termination analysis of [7], and it was improved at
[8] (It is available at http://users.dsic.upv.es/~garroyo/).
Moreover, since this quasi-termination analysis was originally in-
troduced for TRSs, it was adapted to the flat language in [8] also.

We use the same definitions of the quasi-terminations analysis
of [8], just make a slight change in the program annotation proce-
dure.

EXAMPLE 1. Consider the fibonacci example for natural num-
bers shown in Fig. 2. In general we have calculated eight size-
change graphs, but the size-change analysis yields as result three
idempotent multigraphs shown in figure 3.

In this case we base on the Theorem 6 of [8], but now we do
not consider the right-linearity of the dynamic variables. So now
the program is annotated by replacing every rule f(xn) = e in
R by the new rule f(xn) = anng(annu(e)), where ann stands
for annotation, u for unfolding and g for generalization. We have
even changed the annotation criteria for generalization, i.e., we do
not add annotations for generalization anymore. Now we create a
vector for generalization in the annotated program which indicates
to the specialization procedure, which terms should be generalized
(see the constructor BtD in Figure 4).

G4 : fib −→ fib G7 : prod −→ prod

1fib
≻ // 1fib 1prod

≻ // 1prod

2prod
% // 2prod

G8 : sum −→ sum

1sum
≻ // 1sum

2sum
% // 2sum

Figure 3. Idempotent multigraphs for fibonacci

data Nat = Z | S Nat

GEN2 = BtD (”prod”, 2, [D, S])

main v1 = MEM (prod v1 (UNF (fib (S (S (S (S (S Z))))))))

fib eval rigid
fib Z = Z
fib (S Z) = (S Z)
fib (S (S v3)) = UNF (sum (UNF (fib (S v3))) (UNF (fib v3)))

prod eval rigid
prod Z v2 = Z
prod (S v3) v2 = UNF (sum v2 (MEM (prod v3 v2)))

sum eval rigid
sum Z v2 = v2
sum (S v3) v2 = S (UNF (sum v3 v2))

UNF v1 = v1
MEM v1 = v1

Figure 4. Annotated fibonacci example

EXAMPLE 2. Consider again the fibonacci example for natural
numbers shown in Fig. 2. Let us consider a call to the annotation
stage with this program and the abstract initial value [D] for the ar-
gument of main definition. Our BTA returns the following division:

{main 7→ (D), fib 7→ (S), prod 7→ (D, S), sum 7→ (S, D)}

where S denotes that an argument is static (ground) and D that it
is dynamic. Here, our annotation procedure returns the annotated
program shown in figure 4. According to the function annu of [8],
we can annotate fib and sum with UNF; because both have at least
one edge if

≻−→ if in their respective idempotent multigraphs
such that if is static. prod is annotated with MEM following the
function annu also, i.e., does not meet the first three alternatives
of annu. About the function anng; at least the first argument
of prod must be annotated with GEN, however to meet with this
requirement we add a tuple to the vector for generalization. This
tuple should contain: function name, arity and the values [S] or [D]
for the arguments, where [D] indicates that the corresponding term
must be generalized in the specialization stage.

So far, we have described just the annotation stage. Taking the
specialization stage, we first recall the generic procedure for NPE
[1], shown in figure 5, which is similar to the Gallager’s procedure
for the partial evaluation of logic programs [13]. So given a set
of operation-rooted3 terms, i.e., function calls, the procedure ap-
plies an unfolding operator unfold such that a residual rule set is

3 An expression is operation-rooted if it is rooted by a defined function
symbol

paper for GPCE’11 3 2012/5/11

Input: a program R and a set of calls T
Output: a set of calls S
Initialization: i := 0; T0 := T
Repeat

R′ := unfold(Ti,R);
Ti+1 := abstract(Ti,R′

calls);
i := i+ 1;

Until Ti = Ti−1 (modulo variable renaming)
Return: S := Ti

Figure 5. Generic procedure for NPE

returned. This unfold operator is driven by the UNF annotations, so
that all functions annotated with UNF should be unfolded because
according to the idempotent multigraphs originating the annotation;
there is at least one argument with a strict order of reduction (≻)
and also static, meaning that its value is known at the time of spe-
cialization, it certainly ensures that the (partial) evaluation of the
function ends, while functions annotated with MEM should suspend
the evaluation of the call and return to the global control.

The derivations that are computed in the process of specializa-
tion in the local control are based on a slight extension of the RLNT
calculus [3]. RLNT calculus is a non-standard semantics used to
partially evaluate the function calls and describes basic computing
operations of flat programs, such that RLNT specialized programs
were originally processed just in online way. In the offline setting,
we require to add annotations to functions and their arguments (of-
fline); Indeed, RLNT calculus was extended to support these anno-
tations, this extended semantics can be found at [8]. Each compu-
tation performed with the RLNT calculus; generates residual rules
which will compose the residual program.

On other hand the abstraction operator abstract takes a finite
set of operation-rooted terms Ti and then properly adds the set of
operation-rooted subterms in the right-hand sides of the unfolded
calls, which is denoted by R′

calls. The new set Ti+1 may need fur-
ther evaluation and, thus, the process is iteratively repeated while
new terms are introduced.

About vector for generalization, when the global control finds
a term operation-rooted with subterms marked with D into this
vector; the term should be flattened before adding the terms to
the set of calls to be evaluated [30]. By instance, given the term
f (g (x), h(y)), if the generalization vector contains a tuple with
(”f”, 2, [D, D]); function calls f(w1, w2), g(x) and h(y) are added
to the current set of function calls (to be) partially evaluated, i.e.,
Ti+1, where w1, w2 are fresh variables corresponding to the gen-
eralization of the terms g(x) and h(y).

Intuitively speaking, the source program of Figure 2 shows
that function fib can be fully evaluated, i.e., the program can be
specialized just evaluating the function fib. If we use the annotated
program of Figure 4, we may see that you can fully unfold the both
function as sum as fib because both are annotated with UNF. If you
specialize the annotated program with our partial evaluator (mixpo)
gets the program shown in Figure 6, (mixpo) leaves the specialized
program on “FlatCurry” language, however PAKCS [18] is able
to show this program in Curry. We can see, in fact, have been
fully evaluated sum and fib. Likewise, the function prod has been
partially evaluated. In short, the result indicates that for each unit
of main variable should add five units to the right hand side of
prod pe1 Z, i.e., to zero.

3. Implementation of interpreters
In this Section we introduce details of the implementation of
interpreters, but first we present information about the meta-
programming facilities of Curry [16].

module fib2 ann (Nat(Z, S), main, prod pe1) where

data Nat = Z | S Nat

main :: b− > a
main v0 = prod pe1 v0

prod pe1 :: b− > a
prod pe1 eval rigid
prod pe1 Z = Z
prod pe1 (S v6) = S (S (S (S (S (prod pe1 v6)))))

Figure 6. Specialized fibonacci example

Meta-programming in Curry The implementation of our partial
evaluator and our Curry interpreter relies on the meta-programming
facilities of the language Curry. In particular, we consider the in-
termediate language FlatCurry for representing functional logic
programs (available by using the Curry libraries FlatCurry and
FlatCurryTools). In FlatCurry, all functions are defined at the top
level (i.e., local function declarations in source programs are glob-
alized by lambda lifting) and the pattern matching strategy is made
explicit by the use of case expressions. In this setting, a FlatCurry
program is represented by means of the following data type:

data Prog = Prog String --name of module
[String] --imported modules
[TypeDecl] --type declarations
[FuncDecl] --function declarations
[OpDecl] --operator declarations

For simplicity, here we only show the data types for representing
function declarations:

data FuncDecl = Func QName --qualified name
Int --arity
Visibility --public/private
TypeExpr --type
Rule --rule

data Rule = Rule [VarIndex] Expr

Therefore, each function is represented by a single rule whose left-
hand side contains different variables ([VarIndex]) and whose
right-hand side is an expression containing variables, literals, func-
tion and constructor calls, disjunctions, and case expressions:

data Expr = Var VarIndex
| Lit Literal
| Comb CombType QName [Expr]
| Or Expr Expr
| Case CaseType Expr [BranchExpr]

data CombType = FuncCall | ConsCall
data CaseType = Rigid | Flex
data BranchExpr = Branch Pattern Expr
data Pattern = Pattern QName [VarIndex]

| LPattern Literal

Description of interpreters implementation Reasoning that an
interpreter is a kind of operational semantics of low-level, and
therefore may serve as a definition of a programming language
[20], so in Figure 7 we show the simple operational semantics
which should follow our interpreters on an informal basis. How-
ever, it is really based on the basic RLNT calculus of [2] and on
the syntax subset of flat language shown in Section 2. We believe
this is enough to implement our interpreters to be specialized. It is
necessary to say that we do not consider some features of Curry
like: higher-order neither concurrent programming for these imple-
mentations but built-ins and constraints are.

Let’s briefly describe our operational semantics: The symbols
“[[” and “]]” in an expression like [[e]] do not denote a semantic
function but are only used to identify which part of an expression

paper for GPCE’11 4 2012/5/11

HNF
[[e]] ⇒ e ∈ V or e = c() with c ∈ C

[[c(e1, . . . , en)]] ⇒ c([[e1]], . . . , [[en]])
Function Eval

[[g(en)]] ⇒ [[σ(r)]] if g(xn) = r ∈ R is a
function definition with fresh variables
and σ = {xn 7→ en}

Case Eval
[[(f)case e of {pk → ek}]] ⇒ [[(f)case e′ of {pk → ek}]]

if [[e]] ⇒ [[e′]], e ̸∈ V , root(e) ̸∈ C,
and e ̸= (f)case () of {. . .}

Figure 7. Simple operational semantics for interpreters

should be still evaluated. The two rules classified into HNF can
be applied when the considered term is in head normal form, i.e.,
it is a variable or a constructor-rooted term. Function Eval, in
the original RLNT calculus performs the unfolding of a function
call, this is a purely functional unfolding since all arguments in the
left-hand sides of the rules are variables. However, since we are
considering some built-ins and constraints like “==”, “+” , “-” ,
“*”; where they are functions, the expressions with these symbols
could be evaluated at once. So we make directly some actions to
apply these built-ins into the interpreter with the aim of having an
interpreter simple and easy, for the time being. mixpo is able also to
process some built-ins and constraints. We will see some examples
of interpreters in Section 4.

Case Eval first evaluates the case argument by creating a call for
this subterm, as you can see this rule excludes the evaluation of a
case expression whose argument is either a variable, a constructor-
rooted term, or any another case expression. By the moment we just
have implemented some cases of e’, i.e., some cases as resulting of
the case expression. Keeping in mind getting a relatively simple
implementation of interpreters.

As it can seen in the fibonacci example, it has a main function
definition, mixpo looks for the default function main to start the
specialization, so if we want to specialize an interpreter w.r.t. a
program it must be included into the same interpreter; we put in
the right hand side of main the function call to the interpreter
with the following arguments: a boolean flag, the program and
the expression to be evaluated. Previously we must translate the
program to FlatCurry to include just its list of functions in flat
format. Let us explain this, in the appendix A, an example of a
Curry simple interpreter can be seen; there, we have the function:

int p e = do (Prog _ _ _ funs _) <- readFlatCurry p
print (ieval True funs e)

which is enclosed by {- -}. It is only used to test the interpreter, that
is the reason why it is commented. int does two actions; reads the
program and prints the evaluation of expression e. So we give just
this structure into the interpreter as the program to be interpreted,
ieval is the main function of the interpreter. If you see the right
hand side of main function, one of ieval arguments is:
[Func ("rev2","main") 0 Public (TCons ("Prelude","Int") [])
(Rule [] (Comb FuncCall ("Prelude","+") [Comb FuncCall
("Prelude","-") [Comb FuncCall ("Prelude","*") [Lit (Intc 3),
Lit (Intc 4)],Lit (Intc 1)],Lit (Intc 2)]))]

which represents the functions list in FlatCurry of the following
Curry program: main = 3*4-1+2 commented also by {- -} in the
example. You may specialize this simple program with mixpo, able
to specialize built-ins, as we hope you get the following program:

-- Program file: metaintf/examples/rev2_ann_pe
module rev2_ann(main) where
main :: a
main = 13
-- end of module metaintf/examples/rev2_ann_pe

Now, if you specialize the simple interpreter of the appendix,
i.e., first to annotate and then specialize, you get the following
program:
module int_arith_ann(main,ieval_pe1) where
import FlatCurry

main :: a
main = ieval_pe1

ieval_pe1 :: a ieval_pe1 =
FlatCurry.Comb FlatCurry.FuncCall ("Prelude","+")

[FlatCurry.Comb FlatCurry.FuncCall ("Prelude","-")
[FlatCurry.Lit (FlatCurry.Intc 12),FlatCurry.Lit

(FlatCurry.Intc 1)],
FlatCurry.Lit (FlatCurry.Intc 2)]

Striking that all the code of the interpreter has been removed,
but we have as a result of this partial evaluation just two function
definitions: the main function and the ieval function partially
evaluated.

Continuing with the implementation description of interpreters
structure (which refers to the example of Appendix A), we have
two rules to evaluate a constructor-rooted terms, only one of them
unfolds, the rule with True argument, and stops until HNF is
reached. ievalList evaluates the function/constructor expression
list. See the following rules:
ieval True v2 (Comb ConsCall v8 v9) =

(Comb ConsCall v8 (ievalList True v2 v9))
ieval False _ (Comb ConsCall c es) = Comb ConsCall c es

While ieval False _ (Comb ConsCall c es) is used to
have some control over the evaluation of the case expression
argument, i.e., to restrict the unfolding of the possible ConsCall
expressions. Let us check the following segment of Curry code:
ieval top funs (Case ctype e ces) =

case (ieval False funs e) of
Comb ConsCall f es -> ieval top funs (matchBranch ces f es)
Lit l -> ieval top funs (matchBranchLit ces l)

For the sake of simplicity, we take into account only two pos-
sible cases of the resulting Case expression, both results make a
call to the evaluation of the respective branch of the Case, depend-
ing on the resulting Case expression the branch is selected by the
functions matchBranch or matchBranchLit.

Regarding the evaluation of functions, after many tests, we
decided to check built-ins assessment prior to unfold the function.
If the top of the function call refers to the symbols: “==”, “+” , “-
”, “*” or “failed”; the interpreter could make a call to: ieval_EQ,
ieval_ARITH or returns a ‘‘failed’’ expression, otherwise the
interpreter makes a call to unfold, i.e., calls ieval top funs
(matchiRHS funs (mn,f) es). You may verify this in the follo-
wing rule:
ieval top funs (Comb FuncCall (mn,f) es) =

if mn == "Prelude"
then if f == "failed"

then Comb FuncCall (mn,f) es
else if f == "=="

then (ieval_EQ top funs (mn,f) es)
else case f of

"+" -> ieval_ARITH top funs (mn,f) es
"-" -> ieval_ARITH top funs (mn,f) es
"*" -> ieval_ARITH top funs (mn,f) es

else ieval top funs (matchiRHS funs (mn,f) es)

ieval_EQ evaluates a simple case of strict equality, if the argu-
ments are not integer literal, it tries to evaluate the list of arguments.
ieval_ARITH evaluates the simple arithmetic functions, if the ar-
guments are not integer literal, as done ieval_EQ, ieval_ARITH
aims to evaluate the list of arguments.

matchiRHS, first looks for the function to unfold into set of
functions structure, i.e. into the program. When the interpreter finds
the function rule, returns the expression on the right hand side of
that rule with the substitution of all occurrences of variables on the

paper for GPCE’11 5 2012/5/11

left hand side of the same rule by the expressions that apply. See
the following rules:

matchiRHS [] (_,_) _ = Comb FuncCall ("Prelude","failed") []
matchiRHS (Func (_,fname) _ _ _ funrule : fds) (mn,name) es =

if fname==name then matchRHS_aux funrule es
else matchiRHS fds (mn,name) es

matchRHS_aux (Rule vars rhs) es = substitute vars es rhs

To understand a little what happens with the substitution of
variables by the corresponding expressions see example 3.

EXAMPLE 3. In this example we are going to describe how mixpo
unfolds. We know our interpreters unfold the same way that mixpo.
So consider the annotated program of Figure 4. To start the special-
ization of any annotated program, mixpo, looks for the function
main by default, in this case mixpo builds the following call:

[(Comb FuncCall ("fib ann","main") [(Var 0)])]

that is in FlatCurry, which corresponds to (main v0) in Curry
source. We have put a trace into (mixpo) to know the calls to
unfold, the first three are:

unfoldpo: (main v0)
unfoldpo: (MEM (prod v0 (UNF (fib (S (S (S (S (S (Z))))))))))
unfoldpo: (MEM (prod v0 (Case (S (S (S (S (S (Z)))))) of

(Z -> (Z))
(S v105 -> (Case v105 of

(Z -> (S (Z)))
(S v106 -> (UNF (sum (UNF (fib (S v106)))

(UNF (fib v106)))))
))

)))

Given the call (main v0), matchiRHS, first looks for this func-
tion to unfold. You can see that the right hand side of (main v0) is
the expression of second call to unfold and, the third call to unfold
corresponds the same expression of the second call to unfold but
with the ((fib (S (S (S (S (S Z))))))) expression unfolded. Note
that the latter call to unfold there is a Case expression which cor-
responds to the right hand side of the function fib, in flat format,
remember that annotation and specialization is done in this for-
mat. But what about substitutions? The first substitution happens
when matchiRHS finds the structure of the function main, then the
variables on the right hand side indicated at the left of main, in
this case [1] are replaced by expressions of the call to unfold, in
this case the expression list of the call is [(Var 0)], see the call
(main v0) in flat format. Thus v1 is replaced by v0 and is shown in
the result of the first unfold. The second substitution happens when
mixpo requires the second unfold:

(MEM (prod v0 (UNF (fib (S (S (S (S (S (Z))))))))))

first matchiRHS tries to unfold the function fib, so finds the struc-
ture of this function, some code like:

fib v1 = case v1 of
(Z -> (Z))
(S v2 -> (case v2 of

(Z -> (S (Z)))
(S v3 -> (UNF (sum (UNF (fib (S v3))) (UNF (fib v3)))))))

then the variables on the right hand side indicated at the left of
fib, in this case [1] are replaced by expression of the call to unfold,
in this case the expression list of the call is (S (S (S (S (S Z))))),
thus v1 is replaced by (S (S (S (S (S Z))))) resulting a code very
similar to that shown in the third trace of call to unfold in this
example.

In general terms this is the implementation description of inter-
preters structure.

4. Specialization of interpreters with built-ins
and constraints

You may compile through the specialization of an interpreter that
runs just one fixed-source program, producing a target program in
the partial evaluator’s output language, besides compiling by partial
evaluation always generates correct object code [20]. So if we have
a FlatCurry program pfcy that accepts a function call with static
and dynamic data arguments included into the same program, and
a program intCy written in Curry language to interpret programs in
the intermediate FlatCurry language that produces target programs
tgtfcy in FlatCurry also. Thus we may represent a particular inter-
pretation process as:

tgtfcy = [[intCy]] [pfcy]

Our offline partial evaluator mixpo accepts annotated programs
in FlatCurry, thus the first Futamura projection (very similar to the
definition of [20]) may be represented like:

tgtfcy = [[mixpo]] [intCy pfcy]fcy

We include the program to be interpreted and a call to this
program into the same interpreter as arguments of the interpreter’s
call, you can see in the appendix the right hand side of main
function definition, i.e., the ieval function call. In [5] also use
different data (types) structures for programs and data input in order
to compile by partial evaluation.

Let us analyze the specialization of an interpreter with the use
of the conjunction (sequential); the built-in type &&. The interpreter
function main looks like:
{-
main = (3 == 3) && (1 == 1)

-}
main = ieval True [Func ("andexam","main") 0 Public (TCons

("Prelude","Bool") []) (Rule [] (Comb FuncCall ("Prelude","&&")
[Comb FuncCall ("Prelude","==") [Lit (Intc 3),Lit (Intc 3)],
Comb FuncCall ("Prelude","==") [Lit (Intc 1),Lit (Intc 1)]]))]
(Comb FuncCall ("andexam","main") [])

If we require to PAKCS the evaluation of the expression
(3 == 3) && (1 == 1), “True” is the result. In order to interpret
this expression we need to make some changes, first the evaluation
of functions must be able to process the built-in type &&, so we
change this part of interpreter code:
ieval top funs (Comb FuncCall (mn,f) es) =

if mn == "Prelude"
then if f == "failed"

then Comb FuncCall (mn,f) es
else if f == "=="

then (ieval_EQ top funs (mn,f) es)
else case f of

"+" -> ieval_ARITH top funs (mn,f) es
"-" -> ieval_ARITH top funs (mn,f) es
"*" -> ieval_ARITH top funs (mn,f) es
"&&" -> ieval_SAND top funs (mn,f) es

else ieval top funs (matchiRHS funs (mn,f) es)

Notice that we added the call ieval_SAND precisely to assess
the referenced built-in. This last function definition is shown below:

ieval_SAND :: Bool -> [FuncDecl] -> QName -> [Expr] -> Expr
ieval_SAND top fns (mn,fn) [e1,e2] =

case (ieval True fns e1) of
(Comb ConsCall (Pre,Tru) [])-> (ieval top fns e2)
(Comb ConsCall (Pre,Fal) []) ->

(Comb ConsCall (Pre,Fal) [])

From experience we have seen a string specializes more easily
if we define a simple declaration. So we have defined the following
declarations:

Pre = "Prelude"
Fal = "False"
Tru = "True"

After specializing the interpreter with the above changes we
obtain the following program:

paper for GPCE’11 6 2012/5/11

module int_sand_ann(main,ieval_pe1) where
import FlatCurry
main :: a
main = ieval_pe1
ieval_pe1 :: a
ieval_pe1 eval rigid
ieval_pe1 = case (Comb ConsCall ("Prelude","True") []) of

Comb v141 v142 v143 -> case v141 of
ConsCall -> case v142 of

(v144,v145) -> case v143 of
[] -> Comb ConsCall ("Prelude","True") []

You may verify the result loading this FlatCurry program to
PAKCS then requiring the evaluation of main function that:

Comb ConsCall ("Prelude","True") []

is the result of the requirement.
So far we have seen the partial evaluation of simple programs

without dynamic arguments, now see the specialization of the inter-
preter containing the fibonacci program for natural numbers (shown
at Figure 2). As in the latter interpreter partial evaluation we must
change the program to interpret. So the interpreter function main
now looks like:
main x = ieval True [Func ("fib7","main") 1 Public (FuncType
(TCons ("fib7","Nat") []) (TCons ("fib7","Nat") [])) (Rule [1]
(Comb FuncCall ("fib7","prod") [Comb FuncCall ("fib7","fib")
[Var 1],Comb FuncCall ("fib7","fib") [Comb ConsCall ("fib7","S")
[Comb ConsCall ("fib7","S") [Comb ConsCall ("fib7","S") [Comb
ConsCall ("fib7","S") [Comb ConsCall ("fib7","S") [Comb ConsCall
("fib7","Z") []]]]]]]])), Func ("fib7","fib") 1 Public (FuncType
(TCons ("fib7","Nat") []) (TCons ("fib7","Nat") [])) (Rule [1]
(Case Rigid (Var 1) [Branch (Pattern ("fib7","Z") []) (Comb
ConsCall ("fib7","Z") []),Branch (Pattern ("fib7","S") [2]) (Case
Rigid (Var 2) [Branch (Pattern ("fib7","Z") []) (Comb ConsCall
("fib7","S") [Comb ConsCall ("fib7","Z") []]),Branch (Pattern
("fib7","S") [3]) (Comb FuncCall ("fib7","sum") [Comb FuncCall
("fib7","fib") [Comb ConsCall ("fib7","S") [Var 3]],Comb FuncCall
("fib7","fib") [Var 3]])])])), Func ("fib7","prod") 2 Public
(FuncType (TCons ("fib7","Nat") []) (FuncType (TCons ("fib7",
"Nat") []) (TCons ("fib7","Nat") []))) (Rule [1,2] (Case Rigid
(Var 1) [Branch (Pattern ("fib7","Z") []) (Comb ConsCall ("fib7",
"Z") []),Branch (Pattern ("fib7","S") [3]) (Comb FuncCall ("fib7"
,"sum") [Var 2,Comb FuncCall ("fib7","prod") [Var 3,Var 2]])])),
Func ("fib7","sum") 2 Public (FuncType (TCons ("fib7","Nat") [])
(FuncType (TCons ("fib7","Nat") []) (TCons ("fib7","Nat") [])))
(Rule [1,2] (Case Rigid (Var 1) [Branch (Pattern ("fib7","Z") [])
(Var 2),Branch (Pattern ("fib7","S") [3]) (Comb ConsCall ("fib7",
"S") [Comb FuncCall ("fib7","sum") [Var 3,Var 2]])]))]
(Comb FuncCall ("fib7","main") [x])

You can see the x of function main this variable represents a
dynamic value of the interpreter, i.e, a value probably known at
partial evaluation time. This dynamic value spreads through the
interpreter when you run the BTA, so our BTA returns the following
division:
[("main",1,[D]),("ieval",3,[S,S,D]),("ieval_ARITH",2,[D,D]),
("ieval_EQ",1,[D]),("ieval_args",2,[S,D]),("matchBranch",3,[D,D,D]),
("matchBranchLit",2,[D,D]),("matchiRHS",3,[S,D,D]),
("matchRHS_aux",2,[S,D]),("substituteAll",3,[D,D,D]),
("replaceVar",3,[D,D,D]),("substituteAllArgs",3,[D,D,D]),
("substituteAllCases",3,[D,D,D]),("substituteAllCase",3,[D,D,D])]

The size-change analysis (SCA) yields as result thirteen idem-
potent multigraphs, the following functions: main, ieval_EQ,
ieval_ARITH and matchRHS_aux are not involved in the result
of SCA, i.e., do not have idempotent multigraphs, so the calls
to these functions are annotated with UNF (during the annotation
process) because they do not introduce introduce infinite loops.
matchiRHS has an idempotent multigraph but it’s first edge, i.e.,
that corresponds to its first argument, has a label with strict order
of reduction (≻) and is static. Therefore the matchiRHS function
calls are also labeled with UNF. The rest of the function calls are an-
notated with MEM. Therefore, even without taking into account the
vector of generalization, we could deduce that the specialization of
this interpreter may not be very good because it has too many func-
tions that can not be unfolded at the time of the partial evaluation.

However, generally the result of the partial evaluation of our inter-
preters that accept a call with dynamic arguments; is a mixture of
the interpreter and the source program to interpret, containing parts
derived from both [20]. By instance, after the specialization of the
interpreter, the rule of the definition main becomes the following:

main :: b -> a
main v0 = ieval_pe1 (Comb FuncCall ("fib7","main") [v0])

Very nice specialization, but matchiRHS now has four substitu-
tions identified in the right hand side; the branches to unfold: main,
fib, prod and sum. We have also obtained two cases for ieval
definition, i.e., that has grown a bit the size of the code obtained.
We would expect to be executed faster than the original interpreta-
tion at least, but we have reached almost the same runtime average.
The interpretation of the program has certainly improved because
the unfold process has been transferred directly to the function that
is responsible for do it (matchiRHS), i.e., some steps of interpreta-
tion have been saved. Although in this case, specialization has not
sufficiently reduced the interpreter code because most of the func-
tions can not be unfold to a value.

5. Related Work
Considering only offline partial evaluation that have experimented
with the specialization of interpreters are the following: In [21],
Jørgensen generates compilers from interpreters by partial evalua-
tion and obtain interpreters (in strict functional languages) from
formal languages, he uses Similix; a self-interpreter for large
(higher order included [22]) subset of Scheme, so the target lan-
guage is Scheme but translates from BAWL. The BTA of Similix
is monovariant like ours. In [5], Andersen has developed a self-
applicable partial evaluator for a significant subset of C language
without a BTA, he transforms the program into a intermediate lan-
guage core C, analogously we translate to FlatCurry, In [5] also was
reported the first implementation of self-applicable partial evalu-
ator for an imperative language. Tempo is an offline specializer
for C programs [33] able to specialize both in bytecode inter-
preters as structured language and yields excellent speedups. In
[25], Leuschel et. al. present LOGEN as a self-interpreter for logic
programs they have achieved the Jones Optimality in a systematic
way, as our work they present the partial evaluation4 process into
two phases— BTA and specialization phase, and we use a very
similar algorithm for the proper specialization.

6. Conclusion and future work
We have presented the first experiments in the specialization of
interpreters using offline narrowing-driven partial evaluation. Our
partial evaluation process has an automatic monovariant BTA, a
first order termination analysis called size-change analysis and the
proper pure offline partial evaluator process (mixpo). The binding
time analysis processes (BTA, SCA, the annotator) and the special-
izer are written in Curry. The interpreters accepts FlatCurry pro-
grams and the target language is FlatCurry also. The interpreters
that runs a simple source programs without dynamic arguments
specialize very well. Interpreters running programs with dynamic
arguments are also specialized and so far we get a mixture of the in-
terpreter and the source program to interpret but the speedups keeps
almost the same average.

There is a lot of work to do to improve this work, because our
partial evaluator has higher order functions is not self-applicable,
so first we need a higher-order (HO) polivariant BTA and also
to implement a HO termination analysis. We have participated in
a recent work to make a transformation to polivariant BTA of

4 The logic programming paradigm introduced strictly the term “partial
deduction” to replace the term “partial evaluation”

paper for GPCE’11 7 2012/5/11

HO functions by defunctionalization [9], we have to analyze the
feasibility of using this transformation with our current termination
analysis, i.e. the first order SCA, or may use the extended SCA to
HO functional programs [31].

References
[1] E. Albert and G. Vidal. The Narrowing-Driven Approach to Func-

tional Logic Program Specialization. New Generation Computing, 20
(1):3–26, 2002.

[2] E. Albert, M. Hanus, and G. Vidal. A Practical Partial Evaluation
Scheme for Multi-Paradigm Declarative Languages. Journal of Func-
tional and Logic Programming, 2002(1), 2002.

[3] E. Albert, M. Hanus, and G. Vidal. A Residualizing Semantics for
the Partial Evaluation of Functional Logic Programs. Information
Processing Letters, 85(1):19–25, 2003.

[4] M. Alpuente, M. Falaschi, and G. Vidal. Partial Evaluation of Func-
tional Logic Programs. ACM TOPLAS, 20(4):768–844, 1998.

[5] L. O. Andersen. Partial evaluation of C and automatic compiler gener-
ation (extended abstract). In Compiler Construction. 4th International
Conference. (Paderborn, Germany). Lecture Notes in Computer Sci-
ence, pages 251–257. Springer-Verlag, 1992.

[6] S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy.
Journal of the ACM, 47(4):776–822, 2000.

[7] G. Arroyo, J. Ramos, J. Silva, and G. Vidal. Improving Offline
Narrowing-Driven Partial Evaluation using Size-Change Graphs. In
Logic-Based Program Synthesis and Transformation. Revised and Se-
lected Papers from LOPSTR’06, pages 60–76. Springer LNCS 4407,
2007.

[8] G. Arroyo, J. Ramos, S. Tamarit, and G. Vidal. Offline Narrowing-
Driven Specialization in Practice. In ACTAS de las VII Jornadas sobre
Programación y Lenguajes (PROLE 07), pages 137–146, 2007. II
Congreso Español de Inforática (CEDI 2007).

[9] G. Arroyo, J. G. Ramos, S. Tamarit, and G. Vidal. A transformational
approach to polyvariant bta of higher-order functional programs. In
LOPSTR, pages 40–54, 2008.

[10] C. Consel and O. Danvy. Tutorial notes on Partial Evaluation. In
Proc. of the ACM Symp. on Principles of Programming Languages,
pages 493–501. ACM, New York, 1993.

[11] N. Dershowitz. Termination of Rewriting. Journal of Symbolic
Computation, 3(1&2):69–115, 1987.

[12] Y. Futamura. Partial Evaluation of Computation Process—An Ap-
proach to a Compiler-Compiler. Higher-Order and Symbolic Compu-
tation, 12(4):381–391, 1999. Reprint of article in Systems, Computers,
Controls 1971.

[13] J. Gallagher. Tutorial on Specialisation of Logic Programs. In Proc. of
the ACM Symp. on Partial Evaluation and Semantics-Based Program
Manipulation (PEPM’93), pages 88–98. ACM, New York, 1993.

[14] M. Hanus. The Integration of Functions into Logic Programming:
From Theory to Practice. Journal of Logic Programming, 19&20:
583–628, 1994.

[15] M. Hanus. Curry: An Integrated Functional Logic Language. Avail-
able at http://www.informatik.uni-kiel.de/~mh/curry/,
2006.

[16] M. Hanus. Flatcurry: An intermediate representation for Curry pro-
grams. http://www.informatik.uni-kiel.de/~curry/flat/,
May 2011.

[17] M. Hanus and C. Prehofer. Higher-Order Narrowing with Definitional
Trees. Journal of Functional Programming, 9(1):33–75, 1999.

[18] M. Hanus (ed.), S. Antoy, M. Engelke, K. Höppner, J. Koj, P. Niederau,
R. Sadre, and F. Steiner. PAKCS 1.6.0: The Portland Aachen Kiel
Curry System—User Manual. Technical report, University of Kiel,
Germany, 2004.

[19] J. Hullot. Canonical Forms and Unification. In Proc of 5th Int’l Conf.
on Automated Deduction, pages 318–334. Springer LNCS 87, 1980.

[20] N. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice-Hall, Englewood Cliffs, NJ, 1993.

[21] J. Jørgensen. Compiler generation by partial evaluation. Technical
report, Masters thesis, DIKU, 1991.

[22] J. Jørgensen. Generating a compiler for a lazy language by partial
evaluation. In POPL, pages 258–268, 1992.

[23] H. Komorowski. Partial Evaluation as a Means for Inferencing Data
Structures in an Applicative Language: A Theory and Implementation
in the Case of Prolog. In Proc. of 9th ACM Symp. on Principles of
Programming Languages, pages 255–267, 1982.

[24] C. Lee, N. Jones, and A. Ben-Amram. The Size-Change Principle
for Program Termination. SIGPLAN Notices (Proc. of POPL’01), 28:
81–92, 2001.

[25] M. Leuschel, S.-J. Craig, M. Bruynooghe, and W. Vanhoof. Specialis-
ing Interpreters Using Offline Partial Deduction. In Program Develop-
ment in Computational Logic, pages 340–375. Springer LNCS 3049,
2004.

[26] J. Lloyd and J. Shepherdson. Partial Evaluation in Logic Program-
ming. Journal of Logic Programming, 11:217–242, 1991.

[27] B. Martens and J. Gallagher. Ensuring Global Termination of Partial
Deduction while Allowing Flexible Polyvariance. In Proc. of the 12th
Int’l Conf. on Logic Programmin (ICLP’95), pages 597–611. MIT
Press, 1995.

[28] A. Pettorossi and M. Proietti. Transformation of Logic Programs:
Foundations and Techniques. Journal of Logic Programming, 19,20:
261–320, 1994.

[29] S. Peyton-Jones, editor. Haskell 98 Language and Libraries—The
Revised Report. Cambridge University Press, 2003.

[30] J. Ramos, J. Silva, and G. Vidal. Fast Narrowing-Driven Partial
Evaluation for Inductively Sequential Systems. In Proc. of the 10th
ACM SIGPLAN International Conference on Functional Program-
ming (ICFP 2005), pages 228–239. ACM Press, 2005.

[31] D. Sereni. Termination Analysis and Call Graph Construction for
Higher-Order Functional Programs. In Proc. of the 12th ACM SIG-
PLAN Int’l Conf. on Functional Programming (ICFP’07), pages 71–
84. ACM, 2007.

[32] J. Slagle. Automated Theorem-Proving for Theories with Simplifiers,
Commutativity and Associativity. Journal of the ACM, 21(4):622–642,
1974.

[33] S. Thibault, L. Bercot, C. Consel, R. Marlet, G. Muller, and J. Lawall.
Experiments in program compilation by interpreter specialization.
Technical Report 3588, INRIA, December 1998.

[34] V. Turchin. Program Transformation by Supercompilation. In
H. Ganzinger and N. Jones, editors, Programs as Data Objects, 1985,
pages 257–281. Springer LNCS 217, 1986.

paper for GPCE’11 8 2012/5/11

A. Example of a Curry simple interpreter
module int_arith where
import FlatCurry --metaprogramming facilities (e.g., data structure for flat progs)
{-
main = 3*4-1+2
-}
main = ieval True [Func ("rev2","main") 0 Public (TCons ("Prelude","Int") []) (Rule [] (Comb FuncCall

("Prelude","+") [Comb FuncCall ("Prelude","-") [Comb FuncCall ("Prelude","*") [Lit (Intc 3),Lit (Intc 4)],
Lit (Intc 1)],Lit (Intc 2)]))] (Comb FuncCall ("rev2","main") [])

--these functiond are only used by the partial evaluator to annotate some expressions:
UNF x = x
MEM x = x
--function int is only used to test the interpreter (the partial evaluator calls
--directly to ieval to avoid having I/O function calls
{-
int p e = do (Prog _ _ _ funs _) <- readFlatCurry p

print (ieval True funs e)
-}
--ieval: this is the main function of the interpreter
--arguments: a boolean flag, true for the top expression and false otherwise
-- the program
-- the expression to be evaluated
--vars (we use no environment!)
ieval _ _ (Var v) = Var v
--literals
ieval _ _ (Lit l) = Lit l

--constructor calls (observe the use of the Boolean flag)
ieval True v2 (Comb ConsCall v8 v9) = (Comb ConsCall v8 (ievalList True v2 v9))
--OJO: stops in HNF!
--ievalList is only used to evaluate sequentially the arguments of
--a constructor call or an arithmetic operation
ievalList _ _ [] = []
ievalList top funs (e:es) = ievalListaux top funs (ieval top funs e) es
ievalListaux top funs ne es = ne : (ievalList top funs es)

ieval False _ (Comb ConsCall c es) = Comb ConsCall c es

ieval top funs (Comb FuncCall (mn,f) es) =
if mn == "Prelude"
then if f == "failed"

then Comb FuncCall (mn,f) es
else if f == "=="

then (ieval_EQ top funs (mn,f) es)
else case f of

"+" -> ieval_ARITH top funs (mn,f) es
"-" -> ieval_ARITH top funs (mn,f) es
"*" -> ieval_ARITH top funs (mn,f) es

else ieval top funs (matchiRHS funs (mn,f) es)

ieval top funs (Case ctype e ces) =
case (ieval False funs e) of

Comb ConsCall f es -> ieval top funs (matchBranch ces f es)
Lit l -> ieval top funs (matchBranchLit ces l)

--problema con el renaming!
ieval_ARITH :: Bool -> [FuncDecl] -> QName -> [Expr] -> Expr
ieval_ARITH top fns (mn,fn) [e1,e2] =
if (isLitInt e1) && (isLitInt e2)

then (ieval_ARITH_aux (mn,fn) [e1,e2])
else

Comb FuncCall (mn,fn) (ievalList top fns [e1,e2])
--evaluation of simple arithmetic functions
ieval_ARITH_aux (_,f) [(Lit (Intc e1)),(Lit (Intc e2))] =

case f of
("*") -> Lit (Intc (e1*e2))
("+") -> Lit (Intc (e1+e2))
("-") -> Lit (Intc (e1-e2))

isLitInt :: Expr -> Bool
isLitInt e = case e of

(Lit (Intc _)) -> True
_ -> False

ieval_EQ :: Bool -> [FuncDecl] -> QName -> [Expr] -> Expr
ieval_EQ top fns (mn,fn) [e1,e2] =
if (isLitInt e1) && (isLitInt e2)

then (ieval_EQ_aux [e1,e2])
else

if (isLitInt e1) && (isVar e2)
then Comb ConsCall ("Prelude","False") []
else ieval top fns (Comb FuncCall (mn,fn) (ievalList top fns [e1,e2]))

ieval_EQ_aux [(Lit (Intc e1)),(Lit (Intc e2))] =

paper for GPCE’11 9 2012/5/11

case (e1==e2) of
True -> Comb ConsCall ("Prelude","True") []
_ -> Comb ConsCall ("Prelude","False") []

--matchBranch and matchBranchLit are used to select the matching branch
--of a case expression:
matchBranch cbranches c es =

case cbranches of
[] -> (Comb FuncCall ("Prelude","failed") [])
(Branch (Pattern p vars) e):ces ->

if p==c then substitute vars es e
else matchBranch ces c es

matchBranchLit cbranches c =
case cbranches of

[] -> (Comb FuncCall ("Prelude","failed") [])
(Branch (LPattern p) e):ces ->

if p==c then e
else matchBranchLit ces c

-- CALL UNFOLDING:
-- match a right-hand side of a given function:
matchiRHS [] (_,_) _ = Comb FuncCall ("Prelude","failed") []
matchiRHS (Func (_,fname) _ _ _ funrule : fds) (mn,name) es =

if fname==name then matchRHS_aux funrule es
else matchiRHS fds (mn,name) es

matchRHS_aux (Rule vars rhs) es = substitute vars es rhs
substitute :: [Int] -> [Expr] -> Expr -> Expr
substitute vars exps expr = substituteAll vars exps expr
-- substitute all occurrences of variables by corresponding expressions:
-- * substitute all occurrences of var_i by exp_i in expr
-- (if vars=[var_1,...,var_n] and exps=[exp_1,...,exp_n])
-- * leave all other variables unchanged (i.e., variables in case patterns)
--
substituteAll :: [Int] -> [Expr] -> Expr -> Expr
substituteAll vs es x =

case x of
(Var i) -> replaceVar vs es i
(Lit (Intc l)) -> Lit (Intc l)
(Lit (Charc l)) -> Lit (Charc l)
(Comb ConsCall c exps) -> Comb ConsCall c (mapsAll vs es exps)
(Comb FuncCall c exps) -> Comb FuncCall c (mapsAll vs es exps)

-- (Comb (FuncPartCall ma) c exps) ->
-- Comb (FuncPartCall ma) c (mapsAll vs es exps)

(Case ctype e cases) -> Case ctype (substituteAll vs es e)
(substituteAllCases vs es cases)

(Or e1 e2) -> (Or (substituteAll vs es e1) (substituteAll vs es e2))
(Let [(lhs,rhs)] e) ->

Let (mapsAllLet vs es [(lhs,rhs)]) (substituteAll vs es e)
(Free vars e) -> Free vars (substituteAll vs es e)

replaceVar [] [] var = Var var
replaceVar (v:vs) (e:es) var = if v==var then e

else replaceVar vs es var
substituteAllCases _ _ [] = []
substituteAllCases vs es (tbranch:cases) =

(substituteAllCase vs es tbranch) : (substituteAllCases vs es cases)
substituteAllCase vs es x =

case x of
(Branch (Pattern (l,o) pvs) e) ->

Branch (Pattern (l,o) pvs) (substituteAll vs es e)
(Branch (LPattern l) e) ->

Branch (LPattern l) (substituteAll vs es e)
mapsAll vs es [] = []
mapsAll vs es (exp:exps) = (substituteAll vs es exp): (mapsAll vs es exps)
mapsAllLet vs es [] = []
mapsAllLet vs es ((lhs,rhs):bindings) =

(substituteAllLet vs es (lhs,rhs)):(mapsAllLet vs es bindings)
substituteAllLet :: [Int] -> [Expr] -> (VarIndex,Expr) -> (VarIndex,Expr)
substituteAllLet vs es (var,e)= (var,(substituteAll vs es e))

isVar :: Expr -> Bool
isVar e = case e of

(Var _) -> True
_ -> False

paper for GPCE’11 10 2012/5/11

